

	Distex documentation
	Pool
	Pool

	PoolMap
	PoolMap

[image: Build] [https://github.com/erdewit/distex/actions] [image:] [image:] [image: PyPi] [https://pypi.python.org/pypi/distex] [image:] [image: Documentation] [https://distex.readthedocs.io/]

Introduction

Distex offers a distributed process pool to utilize multiple CPUs or machines.
It uses
asyncio [https://docs.python.org/3.6/library/asyncio.html]
to efficiently manage the worker processes.

Features:

	Scales from 1 to 1000’s of processors;

	Can handle in the order of 50.000 small tasks per second;

	Easy to use with SSH (secure shell) hosts;

	Full async support;

	Maps over unbounded iterables;

	Compatible with
concurrent.futures.ProcessPool [https://docs.python.org/3/library/concurrent.futures.html]
(or PEP3148 [https://www.python.org/dev/peps/pep-3148]).

Installation

pip3 install -U distex

When using remote hosts then distex must be installed on those too.
Make sure that the distex_proc script can be found in the path.

For SSH hosts: Authentication should be done with SSH keys since there is
no support for passwords. The remote installation can be tested with:

ssh <host> distex_proc

Dependencies:

	Python [http://www.python.org] version 3.6 or higher;

	On Unix the uvloop package is recommended: pip3 install uvloop

	SSH client and server (optional).

Examples

A process pool can have local and remote workers.
Here is a pool that uses 4 local workers:

from distex import Pool

def f(x):
 return x*x

pool = Pool(4)
for y in pool.map(f, range(100)):
 print(y)

To create a pool that also uses 8 workers on host maxi, using ssh:

pool = Pool(4, 'ssh://maxi/8')

To use a pool in combination with
eventkit [https://github.com/erdewit/eventkit]:

from distex import Pool
import eventkit as ev
import bz2

pool = Pool()
await pool # un-comment in Jupyter
data = [b'A' * 1000000] * 1000

pipe = ev.Sequence(data).poolmap(pool, bz2.compress).map(len).mean().last()

print(pipe.run()) # in Jupyter: print(await pipe)
pool.shutdown()

There is full support for every asynchronous construct imaginable:

import asyncio
from distex import Pool

def init():
 # pool initializer: set the start time for every worker
 import time
 import builtins
 builtins.t0 = time.time()

async def timer(i=0):
 # async code running in the pool
 import time
 import asyncio
 await asyncio.sleep(1)
 return time.time() - t0

async def ait():
 # async iterator running on the user side
 for i in range(20):
 await asyncio.sleep(0.1)
 yield i

async def main():
 async with Pool(4, initializer=init, qsize=1) as pool:
 async for t in pool.map_async(timer, ait()):
 print(t)
 print(await pool.run_on_all_async(timer))

asyncio.run(main())

High level architecture

Distex does not use remote ‘task servers’.
Instead it is done the other way around: A local
server is started first; Then the local and remote workers are started
and each of them will connect on its own back to the server. When all
workers have connected then the pool is ready for duty.

Each worker consists of a single-threaded process that is running
an asyncio event loop. This loop is used both for communication and for
running asynchronous tasks. Synchronous tasks are run in a blocking fashion.

When using ssh, a remote (or ‘reverse’) tunnel is created from a remote Unix socket
to the local Unix socket that the local server is listening on.
Multiple workers on a remote machine will use the same Unix socket and
share the same ssh tunnel.

The plain ssh executable is used instead of much nicer solutions such
as AsyncSSH [https://github.com/ronf/asyncssh]. This is to keep the
CPU usage of encrypting/decrypting outside of the event loop and offload
it to the ssh process(es).

Documentation

Distex documentation [http://rawgit.com/erdewit/distex/master/docs/html/api.html]

	author

	Ewald de Wit <ewald.de.wit@gmail.com>

Distex documentation

Release 0.7.2.

Pool

	
class distex.pool.Pool(num_workers=0, hosts=None, qsize=2, initializer=None, initargs=(), localhost='', localport=0, lazy_create=False, worker_loop=LoopType.default, func_pickle=PickleType.dill, data_pickle=PickleType.pickle)

	Pool of local and remote workers that can run tasks.

To create a process pool of 4 local workers:

pool = Pool(4)

To create 8 remote workers on host maxi, using SSH (unix only):

pool = Pool(0, 'ssh://maxi/8')

distex must be installed on all remote hosts and the distex_proc
script must be in the path. Test this with ssh <host> distex_proc.
When using SSH it is not necessary to have a distex server running
on the hosts.

When not using SSH a spawning server has to be started
first on all hosts involved:

python3 -m distex.server

Warning

Only use this in a trusted network environment.

With the server running on host mini,
to create a pool of 2 workers running there:

pool = Pool(0, 'mini/2')

Local, remote SSH and remote non-SSH workers can all be
combined in one pool:

pool = Pool(4, ['ssh://maxi/8', 'mini/2'])

To give a SSH username or a non-default port such as 10022, specify the
host as 'ssh://username@maxi:10022/8'.
It is not possible to give a password,
use SSH keys instead: ssh-keygen [https://linux.die.net/man/1/ssh-keygen] can be used to create a key and
ssh-copy-id [https://linux.die.net/man/1/ssh-copy-id] to copy it to all hosts.

	Parameters

	
	num_workers (int) – Number of local process workers. The default of
0 will use the number of CPUs.

	hosts – List of remote host specification strings in the format
[ssh://][username@]hostname[:portnumber]/num_workers.

	qsize (int) – Number of pending tasks per worker.
To improve the throughput of small tasks this can be increased
from the default of 2.
If no queueing is desired then it can be set to 1.

	initializer – Callable to initialize worker processes.

	initargs (tuple) – Arguments tuple that is unpacked into the initializer.

	localhost (str) – Local TCP server (if any) will listen on this address.

	localport (int) – Local TCP server (if any) will listen on this port
(default: random open port).

	lazy_create (bool) – If True then no workers will be created until the
first task is submitted.

	worker_loop (int) – LoopType to use for workers:

	default (=uvloop when available, proactor on Windows)

	asyncio (standard selector event loop)

	uvloop (Unix only)

	proactor (Windows only)

	quamash (PyQt)

	func_pickle (int) – PickleType to to use for serializing functions:

	pickle

	cloudpickle

	dill

	data_pickle (int) – PickleType to to use for data:

	pickle

	cloudpickle

	dill

distex.Pool implements the concurrent.futures.Executor
interface and can be used in the place of ProcessPoolExecutor.

PoolMap

	
class distex.poolmap.PoolMap(pool, func, timeout=None, chunksize=1, ordered=True, source=None)

	Map a function using a distributed pool with
eventkit [https://github.com/erdewit/eventkit].

	Parameters

	
	func – Function to map. If it returns an awaitable then the
result will be awaited and returned.

	timeout – Timeout in seconds since map is started.

	chunksize – Source emits are chunked up to this size.
A larger chunksize can greatly improve efficiency
for small tasks.

	ordered –
	True: The order of results preserves the source order.

	False: Results are in order of completion.

Index

 P

P

 	
 	Pool (class in distex.pool)

 	
 	PoolMap (class in distex.poolmap)

 nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Distex documentation

 		
 Pool

 		
 Pool

 		
 PoolMap

 		
 PoolMap

_static/minus.png

_static/plus.png

_static/file.png

